Conditional Density Estimation with Dimensionality Reduction via Squared-Loss Conditional Entropy Minimization

نویسندگان

  • Voot Tangkaratt
  • Ning Xie
  • Masashi Sugiyama
چکیده

Regression aims at estimating the conditional mean of output given input. However, regression is not informative enough if the conditional density is multimodal, heteroskedastic, and asymmetric. In such a case, estimating the conditional density itself is preferable, but conditional density estimation (CDE) is challenging in high-dimensional space. A naive approach to coping with high dimensionality is to first perform dimensionality reduction (DR) and then execute CDE. However, a two-step process does not perform well in practice because the error incurred in the first DR step can be magnified in the second CDE step. In this letter, we propose a novel single-shot procedure that performs CDE and DR simultaneously in an integrated way. Our key idea is to formulate DR as the problem of minimizing a squared-loss variant of conditional entropy, and this is solved using CDE. Thus, an additional CDE step is not needed after DR. We demonstrate the usefulness of the proposed method through extensive experiments on various data sets, including humanoid robot transition and computer art.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sufficient Dimension Reduction via Direct Estimation of the Gradients of Logarithmic Conditional Densities

Sufficient dimension reduction (SDR) is aimed at obtaining the low-rank projection matrix in the input space such that information about output data is maximally preserved. Among various approaches to SDR, a promising method is based on the eigendecomposition of the outer product of the gradient of the conditional density of output given input. In this letter, we propose a novel estimator of th...

متن کامل

A Conditional Entropy Minimization Criterion for Dimensionality Reduction and Multiple Kernel Learning

Reducing the dimensionality of high-dimensional data without losing its essential information is an important task in information processing. When class labels of training data are available, Fisher discriminant analysis (FDA) has been widely used. However, the optimality of FDA is guaranteed only in a very restricted ideal circumstance, and it is often observed that FDA does not provide a good...

متن کامل

Direct Density-Ratio Estimation with Dimensionality Reduction via Hetero-Distributional Subspace Analysis

Methods for estimating the ratio of two probability density functions have been actively explored recently since they can be used for various data processing tasks such as non-stationarity adaptation, outlier detection, feature selection, and conditional probability estimation. In this paper, we propose a new density-ratio estimator which incorporates dimensionality reduction into the densityra...

متن کامل

A Preferred Definition of Conditional Rényi Entropy

The Rényi entropy is a generalization of Shannon entropy to a one-parameter family of entropies. Tsallis entropy too is a generalization of Shannon entropy. The measure for Tsallis entropy is non-logarithmic. After the introduction of Shannon entropy , the conditional Shannon entropy was derived and its properties became known. Also, for Tsallis entropy, the conditional entropy was introduced a...

متن کامل

Two Stage Rank Estimation of Quantile Index Models

This paper estimates a class of models which satisfy a monotonicity condition on the conditional quantile function of the response variable. This class includes as a special case the monotonic transformation model with the error term satisfying a conditional quantile restriction, thus allowing for very general forms of conditional heteroscedasticity. Furthermore, the monotonicity condition enab...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neural computation

دوره 27 1  شماره 

صفحات  -

تاریخ انتشار 2015